UIBC

(Ferrozine Method)

CC1-UIB.55M, 20 Test

INTENDED USE

Reagent kit for quantitative estimation of UIBC/TIBC in serum/plasma.

DIAGNOSTIC SIGNIFICANCE

Measurement of Unsaturated Iron-binding Capacity (UIBC) are used to assist in the diagnosis and treatment of anaemia.

PRINCIPLE

Excess ferrous ions bind specifically with available ironbinding sites of transferrin and saturating the molecules with iron in alkaline medium.

Ferrozine reacts with the remaining unbound iron to form a strongly purple coloured complex which is measured at 560 nm. The difference between the known excess amount of iron added and the remaining unbound iron is equivalent to unsaturated iron-binding capacity (UIBC). Total iron binding capacity (TIBC) is calculated as serum iron plus UIBC.

PRESENTATION

_		
S	otore all reagents at 2-8°C	No. of Bottles
		20 Test
•	1 UIBC (Buffer Reagent)	2
•	2 UIBC (Colour Reagent)	1
•	3 UIBC (Enhancer)	2
•	UIBC standard (80 µmol/L)	1

FINAL REAGENT COMPOSITION

Acti	ve Ingredients	Concentration
•	Buffer	100 mmol/L
•	Detergent	5 mmol/L
•	Ferrozine	4 mmol/L
•	Hydroxylamine Hydrochloride	150 mmol/L
•	Enhancer	10 mmol/L
	рН 4.5 <u>+</u> 0.1 at 25 ⁰ С	
UIB	C Standard (80 µmol/L)	

Also contains non-reactive fillers and Stabilizers.

PRECAUTION

It is essential that all the glasswares used for assay should be Iron-free. Glasswares should be soaked in $0.1N~HNO_3$ or 1N~HCl~& rinsed thoroughly with iron-free deionized water.

PREPARATION OF WORKING REAGENT

Carefully transfer the content of one vial of 3 UIBC to one bottle of 1 UIBC. Mix to dissolve. Wait for 15 minutes before use.

REAGENT STORAGE AND STABILITY

All the reagents included in the kit are stable at $2-8^{\circ}$ C until the expiry date indicated on the label, when protected from light. The working reagent is stable for 60 days at $2-8^{\circ}$ C.

SPECIMEN COLLECTION

Fresh clear serum or plasma with no hemolysis should be used. Specimens are stable for one day at room temperature or one week at $2-8^{\circ}$ C.

REACTION PARAMETERS

	Monochromatic
Type of reaction	: End point (Increase)
Wavelength	: 560 nm
Temperature	: 37ºC
Incubation	: 10 min at 37ºC
Std. Concentration	: 80 µmol/L (446 µg/dL)
Std./Sample Volume	: 200 µl (0.200 ml)
Reagent 1	: 1.0 ml
Reagent 2	: 0.050 ml (50 μl)
Light path	: 1.0 cm
Zero setting with	: Reagent blank

<u>Bichromatic</u>

Other parameters as above	
Wavelength	: 560 nm and 630 nm
Sample Blank	: No
Zero setting with	: Distilled water
Set the instrument using above	system parameters

TEST PROCEDURE

A) Monochromatic Method

	Std.	Test	
Blank		Sample	Sample
		Blank (A1)	Test (A2)
1.0	1.0	1.0	1.0
-	-	0.2	0.2
-	0.2	0.2	0.2
0.4	0.2	-	-
0.05	0.05	_	0.05
	Blank 1.0 - 0.4 0.05	Blank Std. 1.0 1.0 0.2 0.4 0.2 0.05 0.05	Tes Blank Std. Sample Blank (A1) 1.0 1.0 1.0 - - 0.2 - 0.2 0.2 0.4 0.2 - 0.05 0.05 -

Mix and allow to stand for 10 minutes at 37^{0} C. Read absorbance of test (A₁ & A₂) and standard against reagent blank at 560 nm.

B) Bichromatic Method

Pipette into Test tubes	Standard	Test
Working Reagent (ml)	1.0	1.0
Sample (ml)	-	0.2
Standard (ml)	0.2	0.2
Dist. Water (ml)	0.2	-
Reagent-2 (ml)	0.05	0.05

Mix and allow to stand for 10 minutes at 37°C. Read absorbance of test and standard against distilled water at 560 nm & 630 nm.

TEST RESULTS

Excess Iron $(\mu mol/L) = \frac{Abs \text{ or } \Delta \text{ Absorbance of test}}{Absorbance of Std.} \times 80 (\mu mol/L)$

Where,

 \triangle Absorbance = (A2-A1) 80 μ mol/L = Concentration of Standard

UIBC (µmol/L) = 80 - excess Iron (µmol/L). TIBC (µmol/L) = Serum Iron (µmol/L) + UIBC (µmol/L).

To convert (μ g/dl) = μ mol/L x 5.585

LIMITATIONS FOR INTERFERENCE

- 1. Hemolysis causes falsely elevated results.
- 2. Iron medications (oral, intravenous or intravascular) affect serum levels.

СНЕМРАК

Last update 09-2020

(Ferrozine Method)

NORMAL VALUES

UIBC: 28.6 -64.5 µmol/L (160-360 µg/dl) TIBC: 44.7 -71.6 µmol/L (250-400 µg/dl)

LINEARITY

This procedure is linear upto 89 μ mol/L (500 μ g/dl). For sample values higher than 89 μ mol/L (500 μ g/dl), dilute the sample suitably with 0.9% saline and repeat the assay. Apply dilution factor to obtain test results.

REFERENCES

- 1. Tietz NW "Text book of clinical chemistry 2nd Edition" Tetz NW (Ed) WB Saunders company Philadelphia 1994; 2059.
- 2. CaO G.and Prior R.L. Chemistry Anthocyanins and iron metabolism in human serum 1999b; 574-76.
- 3. National committee for Clinical Laboratory Standards. User evaluation of precision performance of clinical chemistry Devices. NCCLS, 1984 NCCLS Publication EP5-T.

